Mori–Zwanzig–Daubechies decomposition of Ising-model Monte Carlo dynamics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Cluster Monte Carlo Dynamics for the Ising Model

We present an extensive study of a new Monte Carlo acceleration algorithm introduced by Wolff for the Ising model. It differs from the Swendsen-Wang algorithm by growing and flipping single clusters at a random seed. In general, it is more efficient than Swendsen-Wang dynamics for d > 2, giving zero critical slowing down in the upper critical dimension. Monte Carlo simulations give dynamical cr...

متن کامل

Parallel processing : the Ising model and Monte Carlo dynamics

This paper investigates the dynamics of Monte Carlo simulations of the kinetic Ising model involving multi-spin-Rip updating schemes as opposed to the conventional random single-spin-flip updating schemes normally used.

متن کامل

Monte Carlo investigation of the Ising model

1 The Ising Model The Ising Model is a simple model of a solid that exhibits a phase transition resembling ferromagnetism. In this model, a “spin direction” is assigned to each vertex on a graph. The standard Hamiltonian for an Ising system includes only nearest-neighbor interactions and each spin direction may be either “up” (+1) or “down” (-1), though generalized models may include long-range...

متن کامل

Monte Carlo Study of a Site-bond Correlated Ising Model

The site-bond correlated Ising model for randomly diluted magnets is studied by Monte Carlo technique. Simulations are performed on two-dimensiona1 square lattice with periodic boundary conditions, and the critical lines in temperature-concentration space are obtained for stronger correlation. We also present some thermal and magnetic properties of the model.

متن کامل

Cluster Monte Carlo simulation of the transverse Ising model.

We formulate a cluster Monte Carlo method for the anisotropic limit of Ising models on (d+1)-dimensional lattices, which in effect, are equivalent with d-dimensional quantum transverse Ising models. Using this technique, we investigate the transverse Ising models on the square, triangular, Kagome, honeycomb, and simple-cubic lattices. The Monte Carlo data are analyzed by finite-size scaling. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers in Physics

سال: 1995

ISSN: 0894-1866

DOI: 10.1063/1.168527